翻訳と辞書 |
Covering problem of Rado : ウィキペディア英語版 | Covering problem of Rado The covering problem of Rado is an unsolved problem in geometry concerning covering planar sets by squares. It was formulated in 1928 by Tibor Radó and has been generalized to more general shapes and higher dimensions by Richard Rado. == Formulation==
In a letter to Wacław Sierpiński, motivated by some results of Giuseppe Vitali, Tibor Radó observed that for every covering of a unit interval, one can select a subcovering consisting of pairwise disjoint intervals with total length at least 1/2 and that this number cannot be improved. He then asked for an analogous statement in the plane. : ''If the area of the union of a finite set of squares in the plane with parallel sides is one, what is the guaranteed maximum total area of a pairwise disjoint subset?'' Radó proved that this number is at least 1/9 and conjectured that it is at least 1/4 a constant which cannot be further improved. This assertion was proved for the case of equal squares independently by A. Sokolin, R. Rado, and V. A. Zalgaller. However, in 1973, Miklós Ajtai ''disproved'' Radó's conjecture, by constructing a system of squares of two different sizes for which any subsystem consisting of disjoint squares covers the area at most 1/4 − 1/1728 of the total area covered by the system.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Covering problem of Rado」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|